01intro_physics_1

Click to view in fullscreen
First
Previous
Next
Last
More

Table Of Contents

  • Preface

  • I: Getting Ready to Learn Physics

  • The Method of Three Passes

  • II: Elementary Mechanics

  • 1.5.1: The Forces of Nature

  • 1.5.2: Force Rules

  • Example 1.6.1: Spring and Mass in Static Force Equilibrium

  • Example 1.7.1: A Mass Falling from Height H

  • Example 1.7.2: A Constant Force in One Dimension

  • 1.7.1: Solving Problems with More Than One Object

  • Example 1.7.3: Atwood's Machine

  • Example 1.7.4: Braking for Bikes, or Just Breaking Bikes?

  • 1.8.1: Free Flight Trajectories – Projectile Motion

  • Example 1.8.1: Trajectory of a Cannonball

  • 1.8.2: The Inclined Plane

  • Example 1.8.2: The Inclined Plane

  • 1.9.1: Tangential Velocity

  • 1.9.2: Centripetal Acceleration

  • Example 1.9.1: Ball on a String

  • Example 1.9.2: Tether Ball/Conic Pendulum

  • 1.9.3: Tangential Acceleration

  • Example 2.1.1: Inclined Plane of Length L with Friction

  • Example 2.1.2: Block Hanging off of a Table

  • Example 2.1.3: Find The Minimum No-Skid Braking Distance for a Car

  • Example 2.1.4: Car Rounding a Banked Curve with Friction

  • 2.2.1: Stokes, or Laminar Drag

  • 2.2.2: Rayleigh, or Turbulent Drag

  • 2.2.3: Terminal velocity

  • Example 2.2.1: Falling From a Plane and Surviving

  • Example 2.2.2: Solution to Equations of Motion for Stokes' Drag

  • 2.2.4: Advanced: Solution to Equations of Motion for Turbulent Drag

  • Example 2.2.3: Dropping the Ram

  • 2.3.1: Time

  • 2.3.2: Space

  • 2.4.1: Identifying Inertial Frames

  • Example 2.4.1: Weight in an Elevator

  • Example 2.4.2: Pendulum in a Boxcar

  • 2.4.2: Advanced: General Relativity and Accelerating Frames

  • 3.1.1: Units of Work and Energy

  • 3.1.2: Kinetic Energy

  • 3.2.1: Derivation I: Rectangle Approximation Summation

  • 3.2.2: Derivation II: Calculus-y (Chain Rule) Derivation

  • Example 3.2.1: Pulling a Block

  • Example 3.2.2: Range of a Spring Gun

  • 3.3.1: Force from Potential Energy

  • 3.3.2: Potential Energy Function for Near-Earth Gravity

  • 3.3.3: Springs

  • 3.4.1: Force, Potential Energy, and Total Mechanical Energy

  • Example 3.4.1: Falling Ball Reprise

  • Example 3.4.2: Block Sliding Down Frictionless Incline Reprise

  • Example 3.4.3: A Simple Pendulum

  • Example 3.4.4: Looping the Loop

  • Example 3.5.1: Block Sliding Down a Rough Incline

  • Example 3.5.2: A Spring and Rough Incline

  • 3.5.1: Heat and Conservation of Energy

  • Example 3.6.1: Rocket Power

  • 3.7.1: Energy Diagrams: Turning Points and Forbidden Regions

  • 4.1.1: Newton's Laws for a System of Particles – Center of Mass

  • Example 4.1.1: Center of Mass of a Few Discrete Particles

  • 4.1.2: Coarse Graining: Continuous Mass Distributions

  • Example 4.1.2: Center of Mass of a Continuous Rod

  • Example 4.1.3: Center of mass of a circular wedge

  • Example 4.1.4: Breakup of Projectile in Midflight

  • 4.2.1: The Law of Conservation of Momentum

  • Example 4.3.1: Average Force Driving a Golf Ball

  • Example 4.3.2: Force, Impulse and Momentum for Windshield and Bug

  • 4.3.1: The Impulse Approximation

  • 4.3.2: Impulse, Fluids, and Pressure

  • 4.5.1: Momentum Conservation in the Impulse Approximation

  • 4.5.2: Elastic Collisions

  • 4.5.3: Fully Inelastic Collisions

  • 4.5.4: Partially Inelastic Collisions

  • 4.5.5: Dimension of Scattering and Sufficient Information

  • 4.6.1: The Relative Velocity Approach

  • 4.6.2: 1D Elastic Collision in the Center of Mass Frame

  • 4.6.3: The ``BB/bb'' or ``Pool Ball'' Limits

  • Example 4.8.1: One-dimensional Fully Inelastic Collision (only)

  • Example 4.8.2: Ballistic Pendulum

  • Example 4.8.3: Partially Inelastic Collision

  • 5.2.1: The r-dependence of Torque

  • 5.2.2: Summing the Moment of Inertia

  • Example 5.3.1: The Moment of Inertia of a Rod Pivoted at One End

  • 5.3.1: Moment of Inertia of a General Rigid Body

  • Example 5.3.2: Moment of Inertia of a Ring

  • Example 5.3.3: Moment of Inertia of a Disk

  • 5.3.2: Table of Useful Moments of Inertia

  • Example 5.4.1: Rolling the Spool

  • Example 5.5.1: The Angular Acceleration of a Hanging Rod

  • Example 5.6.1: A Disk Rolling Down an Incline

  • Example 5.6.2: Atwood's Machine with a Massive Pulley

  • 5.7.1: Work Done on a Rigid Object

  • 5.7.2: The Rolling Constraint and Work

  • Example 5.7.1: Work and Energy in Atwood's Machine

  • Example 5.7.2: Unrolling Spool

  • Example 5.7.3: A Rolling Ball Loops-the-Loop

  • Example 5.8.1: Moon Around Earth, Earth Around Sun

  • Example 5.8.2: Moment of Inertia of a Hoop Pivoted on One Side

  • Example 5.9.1: Moment of Inertia of Hoop for Planar Axis

  • 6.2.1: The Law of Conservation of Angular Momentum

  • Example 6.3.1: Angular Momentum of a Point Mass Moving in a Circle

  • Example 6.3.2: Angular Momentum of a Rod Swinging in a Circle

  • Example 6.3.3: Angular Momentum of a Rotating Disk

  • Example 6.3.4: Angular Momentum of Rod Sweeping out Cone

  • Example 6.4.1: The Spinning Professor

  • 6.4.1: Radial Forces and Angular Momentum Conservation

  • Example 6.4.2: Mass Orbits On a String

  • Example 6.5.1: Fully Inelastic Collision of Ball of Putty with a Free Rod

  • Example 6.5.2: Fully Inelastic Collision of Ball of Putty with Pivoted Rod

  • 6.5.1: More General Collisions

  • Example 6.6.1: Rotating Your Tires

  • Example 6.7.1: Finding p From L/t (Average)

  • Example 6.7.2: Finding p from L and t Separately

  • Example 6.7.3: Finding p from Calculus

  • Example 7.2.1: Balancing a See-Saw

  • Example 7.2.2: Two Saw Horses

  • Example 7.2.3: Hanging a Tavern Sign

  • 7.2.1: Equilibrium with a Vector Torque

  • Example 7.2.4: Building a Deck

  • Example 7.3.1: Tipping Versus Slipping

  • Example 7.3.2: Tipping While Pushing

  • Example 7.4.1: Rolling the Cylinder Over a Step

  • III: Applications of Mechanics

  • 8.1.1: Pressure

  • 8.1.2: Density

  • 8.1.3: Compressibility

  • 8.1.4: Viscosity and fluid flow

  • 8.1.5: Properties Summary

  • 8.1.6: Pressure and Confinement of Static Fluids

  • 8.1.7: Pressure and Confinement of Static Fluids in Gravity

  • 8.1.8: Variation of Pressure in Incompressible Fluids

  • Example 8.1.1: Barometers

  • Example 8.1.2: Variation of Oceanic Pressure with Depth

  • 8.1.9: Variation of Pressure in Compressible Fluids

  • Example 8.1.3: Variation of Atmospheric Pressure with Height

  • Example 8.2.1: A Hydraulic Lift

  • 8.3.1: Archimedes' Principle

  • Example 8.3.1: Testing the Crown I

  • Example 8.3.2: Testing the Crown II

  • 8.4.1: Conservation of Flow

  • 8.4.2: Work-Mechanical Energy in Fluids: Bernoulli's Equation

  • Example 8.4.1: Emptying the Iced Tea

  • Example 8.4.2: Flow Between Two Tanks

  • 8.4.3: Fluid Viscosity and Resistance

  • 8.4.4: A Brief Note on Turbulence

  • Example 8.5.1: Atherosclerotic Plaque Partially Occludes a Blood Vessel

  • Example 8.5.2: Aneurisms

  • Example 8.5.3: The Giraffe

  • 9.1.1: The Archetypical Simple Harmonic Oscillator: A Mass on a Spring

  • 9.1.2: The Simple Harmonic Oscillator Solution

  • 9.1.3: Plotting the Solution: Relations Involving

  • 9.1.4: The Energy of a Mass on a Spring

  • 9.2.1: The Physical Pendulum

  • 9.3.1: Properties of the Damped Oscillator

  • Example 9.3.1: Car Shock Absorbers

  • 9.4.1: Harmonic Driving Forces

  • 9.4.2: Solution to Damped, Driven, Simple Harmonic Oscillator

  • 9.5.1: Simple Models for Molecular Bonds

  • 9.5.2: The Force Constant

  • 9.5.3: A Microscopic Picture of a Solid

  • 9.5.4: Shear Forces and the Shear Modulus

  • 9.5.5: Deformation and Fracture

  • Example 9.6.1: Scaling of Bones with Animal Size

  • 10.3.1: An Important Property of Waves: Superposition

  • 10.3.2: Arbitrary Waveforms Propagating to the Left or Right

  • 10.3.3: Harmonic Waveforms Propagating to the Left or Right

  • 10.3.4: Stationary Waves

  • 11.3.1: Sound Displacement and Intensity In Terms of Pressure

  • 11.3.2: Sound Pressure and Decibels

  • 11.4.1: Moving Source

  • 11.4.2: Moving Receiver

  • 11.4.3: Moving Source and Moving Receiver

  • 11.5.1: Pipe Closed at Both Ends

  • 11.5.2: Pipe Closed at One End

  • 11.5.3: Pipe Open at Both Ends

  • 12.2.1: Ellipses and Conic Sections

  • 12.4.1: Spheres, Shells, General Mass Distributions

  • Example 12.7.1: How to Cause an Extinction Event

Search